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Abstract: Quantum Monte Carlo methods are the most accurate algorithms for predicting1

properties of general quantum systems. We briefly introduce ground state, path integral at2

finite temperature and coupled-electron Monte Carlo methods, their merits and limitations.3

We then discuss recent calculations using these methods for dense liquid hydrogen as in4

undergoes a molecular atomic (metal/insulator) transition. We then discuss a procedure that5

can be used to assess electronic density functionals, which in turn can be used on a larger6

scale for first principles calculations and apply this technique to dense hydrogen and liquid7

water.8

Keywords: quantum Monte Carlo, first-principles simulations, hydrogen, Coupled Electron-9

Ion Monte Carlo, high pressure10
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1. Introduction11

With the increasing computational power and the greater access to large clusters seen during the last12

decade, simulation methods have become an increasingly useful tool for many fields of science, including13

chemistry, materials science, condensed matter physics, and biophysics. In this article we explore some14

of the future impact of Quantum Monte Carlo in the field of first principles simulation (FPS). By this15

we mean reliable simulations that can be performed on condensed matter systems in the absence of16

detailed experimental information on those systems1. Starting with the general Hamiltonian in Eq. (1),17

and taking as input only the chemical compositions, masses, density, temperature etc, currently there is18

a hierarchy of methods that are used to perform such a simulation. In this introduction we focus on only19

three classes of methods: the use of semi-empirical interatomic potentials together with Monte Carlo20

(MC) or molecular dynamics (MD) simulations , DFT-based simulation methods, and quantum Monte21

Carlo simulations.22

The first member of the hierarchy uses interatomic potentials, the best known of which is the23

Lennard-Jones potential. Such potentials are routinely used in the vast majority of simulations (soft24

condensed matter, biophysics, materials science) and are reviewed in a different contribution to this25

issue [1]. The first question is how do we construct such a potential? The typical approach is to use26

available experimental data. However, it is well known that those potentials are not very accurate in27

the vast majority of systems, even if they match experimental data. Hence, though they can be used to28

say something about generic properties of systems, quantitative predictions for defect energies, energy29

barriers, melting temperatures, cannot be trusted 2. Another fundamental limitation of this approach30

is that it becomes difficult to construct reliable interatomic potentials for complex systems containing31

several types of atoms, for example a solvent with various solutes, or systems under extreme conditions,32

since it becomes difficult to get enough reliable experimental data to constrain all of the parameters. For33

these reasons, it is highly desirable to have methods that can provide reliable predictions without input34

from experimental measurements.35

Density Functional Theory (DFT) in the Kohn-Sham formulation solves a one body problem, and36

adds electronic correlation through an exchange-correlation functional. A breakthrough in the usefulness37

and popularity of simulations occurred with the development of the ab initio molecular dynamics38

(AIMD) approach by Car and Parrinello [2], when they combined molecular dynamics and DFT to39

perform simulations of complex chemical systems. Due to its favorable ratio between accuracy and40

computational cost, DFT has become the workhorse in the field of first-principles simulations. In fact,41

the recent explosion in the popularity of first-principles methods is, to a large part, due to the success42

of DFT in providing a fairly accurate description of the electronic structure of materials at a reasonable43

computational cost. DFT also gives access to a large range of observables. While DFT has been very44

successful in the description of many types of materials, e.g. metals and weakly correlated systems,45

many of the currently available exchange-correlation functionals in DFT possess well-known limitations46

[3], including the failure to properly describe strongly correlated materials, self-interaction errors, etc.47

It is recognized that even for such a fundamental system as water, the AIMD procedure is not accurate48

1Of course experiment has been used to give us the general physical laws, and to validate the computational approaches.
2If the potential has been adjusted to reproduce experimental measurements, then the method is no longer first principles,

and the question becomes whether the potential is transferrable, i.e. reliable for properties that are not fitted for.
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enough, giving large errors in many basic properties including the melting temperature, the diffusion49

constant, the compressibility, among others [4].50

In the past decade there has been an explosion of new DFT functionals with various characteristics51

because of the difficulty of making systematic improvements to the functional or judging the accuracy52

of a functional. If the DFT functional is considered as “variable” then how does the user, in the absence53

of experimental data, decide on the functional? In the case of finite molecular systems, the availability54

of high-level quantum chemistry methods offers a possible path towards the improvement of DFT, for55

example by minimizing errors in a training set between DFT and CCSD(T) results. In fact, many56

exchange-correlation functionals contain optimizable parameters that are obtained from calculations57

on finite molecular systems (exceptions to this include LDA, PBE, among others), where results of58

quantum chemistry methods are routinely used as a references. In solids, accurate calculations using59

many-body methods are computationally expensive, which has limited their use in the development of60

density functionals. While there has also been considerable developments in other correlated approaches61

for bulk systems, such as GW, Bethe-Saltpeter, and DMFT, they are more expensive and still leave62

questions of accuracy. For reasons of space, we do not discuss these approaches further.63

The third approach is the use of quantum Monte Carlo (QMC) methods, which are generalizations64

of the classical Monte Carlo techniques to quantum statistical physics and fundamentally based on65

imaginary-time path integrals. For a class of systems (bosons, one dimensional physics) such techniques66

provide an exact computational method. For general problems, though not exact, they are highly67

accurate and systematically improvable. Although there are a variety of QMC methods (ground state,68

variational, Path Integral, auxiliary field...) fundamentally they are closely related. QMC are the most69

accurate general methods but are less developed and require much more computational facilities than70

DFT methods (although the scaling of computer time versus system size is similar) limiting the systems71

on which such simulations can and have been done. The largest impact to date of QMC has been in the72

development and improvement of DFT methods; specifically we mention the correlation energy of the73

electron gas [5], a fundamental component in almost all exchange-correlation functionals used in DFT.74

Recent calculations [6] give the corresponding correlation energies for temperatures above zero.75

Later in this paper we give an example of work in progress in this direction where QMC is used76

to directly rank various DFT functionals. We suggest that this benchmark quality data could be used77

to improve directly the best functionals. One can then envision using the highest ranked functional to78

develop intermolecular potentials that would then be of higher quality. Ercolessi et al. [7] have developed79

the force-matching procedure to find the optimal pair potential reproducing the forces appearing in an80

AIMD simulation. Such an approach is now feasible using QMC calculated forces and energies.81

First principles simulation methods entirely based on QMC have also been developed in the last82

decade. These are the Coupled Electron-Ion Monte Carlo method [8] and the QMC-Molecular Dynamics83

[9], and have been recently reviewed in [10]. However their application to condensed phases has been84

limited so far to high pressure hydrogen, and hydrogen-helium mixtures because of the considerable85

computation cost of those methods. In this paper we will illustrate their use to investigate the dissociation86

of liquid molecular hydrogen under pressure, a problem which is still unsolved by DFT methods.87

The article is organized as follows. We first describe in section 2 the various QMC methods. In the88

following section 3.1 we then present a few applications of QMC to the high pressure phases of hydrogen.89



Version July 9, 2013 submitted to Entropy 4 of 38

This is followed in section 3.2 by a description of the use of these methods to provide quantitative90

information on the accuracy of various DFT functionals. Finally we close with a discussion in section 4.91
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2. Computational Methods92

In this section, we review some of the Quantum Monte Carlo methods used in the first principles93

modeling of condensed matter systems. Under normal conditions of temperature and pressure, such94

systems are described to a high degree of accuracy by the non-relativistic Hamiltonian for a collection95

of electrons and ions:96

Ĥ = T̂n + Ĥel = T̂n + T̂e + V̂ ,

T̂n = −
Nn∑
I=1

λI5̂
2

I , T̂e = −λe
Ne∑
i=1

5̂
2

i ,

V̂ =
∑
I<J

zIzJ

|~RI − ~RJ |
+
∑
i<j

1

|~ri − ~rj|
−
∑
i,I

zI

|~ri − ~RI |
, (1)

where Nn and Ne are the number of ions and electrons, respectively, in atomic units λe = 1/2,97

λI = 1/(2MI), and MI and zI are the mass and charge (in units of the electron mass me and charge98

e) and charge of the nucleus I . The system occupies a volume Ω.3. Note that ~r with lower case99

indexes (i, j, ...) is used to denote the position of electrons and ~R with upper case indexes (I , J , ...)100

is used for the nuclei. When no indices are used, ~r and ~R represent the full 3Ne and 3Nn dimensional101

vectors, respectively. The electronic Hamiltonian Ĥel corresponds to the solution of the problem in102

the clamped-nuclei approximation, where the ions produce a fixed external potential for the electrons.103

Another quantity that will be of interest is the electron number-density given by ρ = Ne/Ω, and104

parameterized with rs = a/a0, where 4πa3/3 = ρ−1. Given Eq. (1), we only need to add the temperature,105

particle statistics and boundary conditions to completely specify the physical and numerical problem to106

be solved.107

Finding the eigenvalues and eigenfunctions of the Hamiltonian in Eq. (1) is a formidable task,108

impossible to do analytically except for a few simple systems such as the single hydrogen atom.109

In practice, numerical or approximate theoretical methods must be used. Two of the most widely110

applicable methods are based either on imaginary-time path integrals or density functional theory (DFT),111

as discussed in the following subsections.112

3In this section, we use atomic units, where Planck’s constant h̄ = me = kB = e = 1 with kB being Boltzmann’s constant,
and the energy is measured in Hartrees Eh = 315, 775 K= 27.2114 eV. Note that, in these units, the energy of a hydrogen
atom is 0.5Eh, the binding energy of a hydrogen molecule is 0.17Eh, the unit of length is the Bohr Radius a0 = 0.0529 nm,
and the equilibrium bond length is 1.4 a0.
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2.1. Ground State Methods113

The following ground state methods seek to evaluate expectation values of physical observables taken
over the ground state wavefunction φ0(R):

〈Ô〉 =

∫
dRφ∗0(R)Ôφ0(R)∫
dR |φ0(R)|2

. (2)

Two problems are evident from this formula. The first is that we almost never know φ0(R) exactly. The114

second is that even if we did, Eq. (2) is a high dimensional integral. The following methods address both115

these problems. For sake of notation simplicity, throughout the sections 2.1-2.2 we will indicate by R116

the set of all coordinates of the quantum degrees of freedom without distinction between electrons and117

nuclei.118

2.1.1. Variational Monte Carlo119

Variational Monte Carlo (VMC) is conceptually the simplest of the ground-state QMC methods. It120

works by approximating the true ground-state wavefunction φ0(R) with some trial wavefunction ΨT (R).121

Integrals like Eq. (2) are then performed using Metropolis Monte Carlo sampling, with ΨT (R) in place of122

φ0(R) [11]. The accuracy of this method depends strongly on how closely ΨT (R) approximates φ0(R).123

Fortunately, the variational principle of quantum mechanics gives us a metric by which to improve the124

quality of trial wavefunctions. Consider the expectation value of the Hamiltonian and its variance:125

E[ΨT ] =

∫
dRΨ∗T (R)ĤΨT (R)∫
|ΨT (R)|2dR

(3)

σ2
E[ΨT ] =

∫
dRΨ∗T (R)(Ĥ2 − E[ΨT ])ΨT (R)∫

dR |ΨT (R)|2
(4)

(5)

The variational theorem states that:126

E[ΨT ] ≥ E[φ0] (6)

σ2
E[ΨT ] ≥ σ2

E[φ0] = 0. (7)

Based on this, improvements to the wavefunction can be quickly gauged by whether they lower127

the energy and variance. A popular approach for fermionic problems is to assume a Slater-Jastrow128

wavefunction: a Slater determinant of single-particle orbitals, multiplied by a function that is129

symmetric under particle exchange [12,13]. The single-particle orbitals are typically taken from other130

quantum-chemistry methods (Hartree-Fock, DFT, etc). Other possible choices include multi-Slater131

determinant expansions [14], geminals [15], etc.132

VMC can be improved if we consider classes of trial wavefunctions ΨT (R,α) parameterized by133

α = (α1, ..., αm). We then minimize the energy and/or variance with respect to these parameters. Recent134

improvements to optimization algorithms allow the optimization of thousands of variational parameters135

[16,17]. Traditionally, only the Jastrow functions have been parameterized, although work has been done136

using parameterized single particle orbitals and multi-Slater determinantal expansions.137
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VMC has some advantages that keep it in use. First, it is usually computationally cheaper than more138

accurate QMC methods, scaling like O(N3) for fermions but with a smaller prefactor. VMC can also139

include several different types of electron correlations. Lastly, it doesn’t suffer from a sign problem.140

However, it is at heart an approximate method, and does depend on the choice of trial wavefunction.141

2.1.2. Projector Methods142

2.1.3. Formalism143

Projector methods attempt to stochastically project out the exact many-body ground state, allowing
us to sample this distribution for Monte Carlo integration. The “projector”, or imaginary-time Green’s
function G(R′, R, β′ − β), is the operator solution to the imaginary-time Schrödinger equation:

∂Ψ

∂β
= −ĤΨ(R, β), (8)

subject to the boundary condition that limβ′→β G(R′, R, β′ − β) = δ(R′ − R). One can verify that the144

formal solution is Ĝ = exp(−βĤ). Now consider an arbitrary wavefunction Ψ(R, β = 0) that is not145

orthogonal to the ground state φ0(R). Expanding this function in terms of the eigenfunctions of the146

Hamiltonian, and applying the projector to this, we find:147

Ψ(R, β) =
∑
i

aiφi(R)e−βεi ,

∝ a0φ0(R) +
∑
i

aiφi(R)e−β(εi−ε0). (9)

This implies that as β →∞, we are left with just the ground state wavefunction.148

For efficiency reasons, it is better to use the “importance-sampled” Schrödinger’s equation [12,18,19].149

We obtain this by writing the original equation in terms of f(R, β) = ΨT (R)Ψ(R, β). After some150

algebra [12], we find that151

∂f(R, β)

∂β
= L̂f(R, β), (10)

= λ∇ · [∇− F (R)] f(R, β) + [ET − EL(R)] f(R, β).

F (R) is the quantum force defined by F (R) = ∇ ln |ΨT (R)|2 and EL(R) is the local energy. If152

f(R, β) ≥ 0 everywhere, then we can interpret f as a probability distribution. This amounts to153

demanding a bosonic many-body ground state (fermions will be covered in a later section). Eq. (10)154

can then be interpreted a generalized Smoluchowski equation for a drift-diffusion process with sources155

and sinks. The first term represents a drift-diffusion process, whereas the second term represents156

an exponential growth/decay process. When we get around to simulating this equation, we will use157

the mapping between a Smoluchowski equation governing probability distributions, and Langevin-like158

equations, governing the diffusion and growth of particles.159

The Green’s function for this equation is formally G̃(R′, R, β) = 〈R′| exp(βL̂)|R〉, although it160

is easy to show that this is related to the original projector by the transformation G̃(R′, R, β) =161
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ΨT (R′)G(R′, R, β)ΨT (R)−1. In the short-time approximation, we can decouple the drift-diffusion and162

growth operators by the Trotter formula. The result (for the symmetric decomposition) is:163

G̃(R′, R, τ) = GDD(R′, R, τ)GB(R′, R, τ) (11)

GDD = exp

(
−(R−R′ − 2λeτeF )2

4λeτe

)
(12)

GB(R′, R, τ) = exp(−τ
2

[EL(R′) + EL(R)− 2ET ]) (13)

The short-time approximation allows us to deal with the full propagator as a product of short-time164

propagators, Ĝ(β) = (Ĝ(τ = β/M))M . The cost is that we have now incurred a time-step error that we165

must take into account.166

2.1.4. Diffusion Monte Carlo167

In diffusion Monte Carlo [19–21], we represent the distribution function f(R, β) as an ensemble of168

3N-dimensional samples {R1, ..., RM}, which are known as “walkers”. The average density of walkers169

is proportional to the distribution function f .170

As in classical diffusion, we would then simulate Eq. (11) by use of a Langevin-like process acting
on the walkers. Assuming that the time step τ = β/M is sufficiently small, we advance from f(R, β)→
f(R, β + τ) by first proposing to move each walker Ri to R′i by a drift-diffusion step, prescribed by Eq.
(12). Then we accumulate a weight associated with walker i, given by wi(β+ τ) = wi(β)GB(R′i, Ri, τ).
To calculate the expectation value of an operator Ô over f(R, β) = ΨT (R)Ψ(R, β), we average over the
ensemble of walkers, including the appropriate weights:

〈Ô〉 =

∑M
i=1 wi(β)O(Ri)∑M

i=1 wi(β)
. (14)

If we stopped here, this would be the basis of pure-diffusion Monte Carlo [22]. Because these weights are171

exponential factors, the variance associated with Eq. (14) will increase exponentially as the simulation172

progresses: the weights of a few walkers will exponentially grow, whereas the rest will exponentially173

tend to zero.174

Branching diffusion Monte Carlo [20], by far the most used form of DMC, fixes this problem by175

using the weights to either replicate or kill off walkers. After each drift-diffusion step, the number of176

walkers associated with the single walker Ri to advance to the next time-step, M i
next is chosen to be177

M i
next = INT(wi(β+ τ) + ξ), where ξ is a random number between [0, 1]. The weights of the replicated178

walkers are all adjusted to conserve the total weight of walker i as much as possible. Modern methods are179

typically hybrids, where the weights of walkers are carried until they exceed certain established bounds,180

at which point they are branched [23].181

The simulation is run by initializing the starting ensemble according to f(R, 0) = |ΨT (R)|2.182

Assuming β is the projection time required to reach the ground-state, the simulation is incremented183

M = β/τ steps, at which point our ensemble is distributed according to f0(R) = ΨT (R)φ0(R). Samples184

can then accumulated, and the simulation is run for a long enough time to achieve the desired error bars.185
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It is important to note that since we are sampling f0(R), this corresponds to the following type of
expectation value, known as a “mixed-estimate”:

〈Ô〉DMC =
〈ΨT |Ô|φ0〉
〈ΨT |φ0〉

(15)

For observables that commute with the Hamiltonian, this gives us exact, unbiased estimates over the true186

many-body ground state wavefunction. For those that don’t, the estimators will be biased by the quality187

of the trial wavefunction. This bias is less than that encountered by VMC, but still present. This can be188

alleviated somewhat by the use of “extrapolated estimators”, and by the “forward-walking” method [24].189

2.1.5. Reptation Monte Carlo190

Reptation Monte Carlo is based on the path-integral representation of the projector. Assuming that β
is large enough to guarantee sufficient convergence to the ground state, we begin by partitioning the full
projector into M segments of time-interval τ = β/M , called “time slices”. Inserting a resolution of the
identity between each short-time projector, we find the following path-integral expression for the mixed
distribution 〈ΨT |φ0〉:

〈ΨT |φ0〉 =

∫
dR0 . . . dRMΨT (R0)G(R0, R1, τ) . . . G(RM−1, RM , τ)ΨT (RM) (16)

Using the short-time approximate Green’s function at the beginning of this section, we can recast this191

expectation value in a more traditional path-integral form:192

〈ΨT |φ0〉 = Z =

∫
DXeS[X] (17)

S[X] = ln ΨT (R0) + ln ΨT (RM)−
M−1∑
i=0

Ls(Ri, Ri+1) (18)

Ls(R
′, R) =

(R′ −R)2

4Dτ
+

1

2
(R′ −R) · (F ′ − F ) (19)

+
τ

2

[
EL(R′) + EL(R) +D(F 2(R′) + F 2(R))

]
(20)

Here, X is shorthand for the directed path X = R0, . . . , RM . Eq. (17) plays the role of a partition193

function in statistical mechanics, where the Π[X] = eS[X]/Z is the probability of a given pathX ,−S[X]194

is the ground-state action, which includes the wavefunctions at the ends of the path, as well as a sum195

over “link-actions” Ls(R′, R), which are defined between time slices (see Eqs. (19-20)). The form we196

used for the link-action comes from symmetrizing the normal Green’s function by hand, and writing it197

in terms of the importance-sampled Green’s functions [25].198

The versatility of reptation Monte Carlo comes from how Π[X] is sampled. In the original method199

[26], one takes a given path X and chooses a growth direction at random. One then proposes a new200

path X∗ by adding a time slice to the “head” and removing one from the “tail”. Acceptance or rejection201

of this move based on the usual Metropolis acceptance step. This type of move is called “reptation”,202

reminiscient of a “reptile”, from which the method derives its name. The proposed head move is done203

by a drift-diffusion move, as in DMC, and rigorously preserves detailed balance.204
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Most practical implementations use what’s known as the “bounce algorithm” [25]. Rather than choose205

the growth direction randomly, the direction is set at the beginning of the simulation and is changed only206

after a rejection step, hence the name “bounce”. This method does not satisfy detailed balance, but207

does satisfy a more general stationarity condition that we require for Markov chain Monte Carlo. This208

dramatically decreases the autocorrelation time of the method, and also tames ergodicity problems that209

have been observed to crop up in the method.210

RMC is appealing for two main reasons. It gives us the same level of accuracy for the energy as211

in DMC, but correlated sampling between different configurations can be done without approximation.212

This is particularly useful in methods like CEIMC. RMC also gives us the ability to sample expectation213

values over the pure distribution, as seen below:214

〈Ô〉pure =
〈ΨT |e−

β
2
ĤÔe−β2 Ĥ |ΨT 〉

〈ΨT |e−βĤ |ΨT 〉
(21)

=
1

Z

∫
DXe−S[X]O(Rβ/2) (22)

This shows that the center time slice of the reptile is distributed according to |φ0(R)|2, whereas the215

ends are distributed according to the mixed distribution f(R). This easy access to the pure distribution216

makes RMC ideal for calculations of unbiased observables and correlation functions, doing so in a more217

efficient manner than “forward-walking” in DMC.218

2.1.6. The Fixed-Node Approximation219

The previous projector methods we mentioned are in principle exact for bosonic systems, since the220

mapping to a diffusion process is valid when φ0(R) ≥ 0 everywhere. However, since the wavefunction221

for a fermion systems must be antisymmetric under exchange, the ground state wavefunction will have222

as many negative configurations as positive ones4. We can restore the probabilistic interpretation of223

the wavefunction Ψ(R, β) if we factor the sign into the weight of the walker, or into the observable224

itself. It turns out that in doing so, we will have large and almost equal contributions to the expectation225

value of opposite signs. This leads to an exponentially decaying signal to noise ratio, implying that the226

computational effort required to treat the fermion problem directly scales exponentially.227

By far, the most common means of alleviating the sign-problem in both DMC and RMC is applying228

the “fixed-node” approximation [20,21]. We assume that the nodes of φ0(R) are the same as the nodes229

for ΨT (R). We then propagate our ensemble of walkers or our reptile strictly within restricted space230

where ΨT (R) doesn’t change sign. This can be implemented by rejecting moves that carry walkers231

across a node, or bouncing a reptile whenever a head move is proposed across a nodal surface. Though232

this is an uncontrolled approximation, it turns out to be an extremely good one in most cases. Fixed-node233

energies are known to be upper bounds, which allows us to optimize the nodal surfaces and to compare234

fixed-node DMC and fixed-node RMC energies with other methods. It turns out that both of these235

methods are among the most accurate computational methods known for electronic systems.236

4In many cases the wavefunction can be made real
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2.2. Finite-Temperature Methods237

Next, we summarize path integral methods. These methods are similar to DMC but can treat systems238

at non-zero temperature: a many-body density matrix replaces the trial wave function. Concerning first239

principles simulations the path integral method can be used either to simulate the properties of thermal240

electrons or to simulate the zero point effects of light nuclei or both. For electronic simulations there241

are two major problems. First, the energy scale of electrons is 1 Hartree or above, thus to reach ambient242

temperature requires very long paths. Second, since electrons are fermions, antisymmetrization and243

hence the sign problem is inevitable. For a more complete overview of the method and its application to244

fermion systems, see Refs. [27] and [28] respectively.245

2.2.1. Path Integrals246

To begin, we define the many particle density matrix:

ρ(R,R′; β) = 〈R | e−βĤ | R′〉 (23)

where R ≡ (r(1), . . . , r(N)) with r(i) specifying the spacial coordinates of the ith of N particles, and
β ≡ 1/kBT , the inverse temperature. The diagonal of the density matrix ρ(R,R′; β)/Z(β) is the quantity
that we need to sample in a first principles simulation. The partition function is defined as the trace of
the density matrix,

Z(β) = Tr(ρ) =

∫
dR〈R | e−βĤ | R〉 =

∫
dRρ(R,R; β). (24)

The expectation value of any observable may be computed from this definition as

〈Ô〉 = Tr(Ôρ)/Z = Tr(Ôρ)/Tr(ρ). (25)

Using the product property of the density matrix M times, such that β = Mτ , we write the partition
function (or the diagonal density matrix) as an integral over a discrete path:

Z(β) =
M−1∏
i=0

∫
ddRiρ(R0, R1; τ)ρ(R1, R2; τ) . . . ρ(RM−1, R0; τ). (26)

We have reduced the problem of sampling a low temperature density matrix to one of finding a high
temperature density matrix and integrating over the path. The action, defined as

S(Ri, Rj; τ) ≡ −ln[ρ(Ri, Rj; τ)]. (27)

can be broken into kinetic and potential parts, using Trotter’s formula. The integration over all of the path247

variables is done using a specialized form of either Metropolis Monte Carlo or Molecular Dynamics.248

Finally, in order to account for the particle statistics of the simulated system, we must sum over
permutations P , giving

Z(β) =
1

N !

∑
P

(±1)P
∫
R→PR

dRte
−S[Rt] (28)

where Rt represents the generic path starting at R and ending at PR.249
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2.2.2. Restricted Paths250

For fermions, negative terms enter in this sum, leading to a sign problem. As was done in the previous
discussion of DMC, one way to circumvent this issue is to impose a nodal constraint [29]. We define the
nodal surface ΥR?β for a given point R? and inverse temperature β to be

ΥR?β = {R | ρ(R,R?; β) = 0} (29)

which is a (dN − 1)-dimensional manifold in dN -dimensional configuration space. Here, R? is dubbed
the reference point, as it is needed to define the nodal surfaces. Inside a nodal cell, by definition the
sign of the density matrix is uniform. Using Dirichlet boundary conditions, we may solve the Bloch
equation within each nodal cell. We define the reach Γβ(R) as the set of all continuous paths Rτ , for
which ρ(Rτ , R?, β) 6= 0 for all intermediate τ (0 < τ ≤ β), i.e. a node-avoiding path.

Γβ(R) = {γ : R→ R′ | ρ(R,Rτ ; β) 6= 0}. (30)

It is clear that all paths contributing to the Bloch equation solution must belong to this reach. For all
diagonal contributions, odd permutations must cross a node an odd number of times and thus are not
allowed by this constraint and are exactly cancelled by all paths of node-crossing even permutations.
This leaves us with the following expression for the density matrix,

ρ(R,R; β) =
1

N !

∑
P,even

∫ γ∈Γβ(R)

γ:R→PR
DRτe

−S[Rτ ]/h̄. (31)

We have thus turned the sign-full expression for the density matrix into one which includes only terms
of a single sign, allowing efficient computation. However, because ρ appears on both sides of Eq. 31,
this requires a priori knowledge of the density matrix nodal structure, which is generally unknown. To
escape this self-consistency issue, an ansatz density matrix that approximates the actual nodal structure,
is introduced. This will give an exact sampling of the fermi density matrix if its nodes are correct. This
method is called restricted PIMC (RPIMC). The density matrix for non-interacting fermions, is a Slater
determinant of single-particle distinguishable density matrices, ρ(R,R?; β) = 1

N !
det ρij? where

ρij? = (4πλβ)−d/2 exp(−(ri − rj?)2

4λβ
). (32)

It is a good approximation to use the free particle density matrix at high temperatures (say for251

temperatures greater than the Fermi energy) and when correlation effects are weak. Furthermore, due252

to the constraint of translational invariance, free particle nodes are quite reasonable for homogeneous253

systems.254

The nodal error, arising from using an approximate restriction is problematic since it is uncontrollable.255

The finite temperature variational principle is through the free energy, as opposed to the internal energy256

in the ground state. Thus one possible solution is parameterize the nodal ansatz, and then minimize257

the free energy by varying the parameters. This will require a thermodynamic integration, in general.258

Systems analyzed to date suggest that the nodal error arising from the free-particle ansatz is small since259

the correlation from the potential is fully taken into acccount.260
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2.2.3. Path Integrals for Nuclei261

Even when quantum particles can be considered distinguishable, as for instance light nuclei in262

condensed phases, there could be substantial physical effects arising from their quantum behavior, i.e.263

resulting from the T̂n in Eq. (1). For example in bulk hydrogen and in water, the zero point motion264

of the protons must be taken into account for an accurate description. Furthermore, the frequently265

used harmonic approximation is often inadequate since non-harmonic effects can be as significant as266

harmonic effects. In contrast to the situation with electrons, our ability to simulate the nuclei with267

current algorithms and hardware is well controlled; because the nuclei are thousands of time heavier,268

they are much closer to the classical limit, so that fewer path steps are needed. For hydrogen containing269

compounds at room temperature, one can often get away with about ten steps. A second consequence is270

that particle statistics (either fermi or bose) can typically be ignored; a notable exception is the difference271

between para- and ortho-hydrogen, important for modeling the low-temperature low-pressure crystals of272

molecular hydrogen and deuterium.273

A frequent use of path integrals for nuclei occurs when DFT is used to integrate out the electronic274

degrees of freedom. However, one wants to use the DFT energy surface for the properties of the quantum275

nuclei in equilibrium, using the path integral method. To perform the path integration, it is advantageous276

to use molecular dynamics instead of Monte Carlo since that will allow the electronic wave functions to277

evolve smoothly in time, and thus reduce the time to convergence in solving the DFT self-consistency278

conditions. M. Ceriotti, et al. [30] have devised an ingenious noise filtering scheme to reduce the number279

of needed path integral steps. Assuming the density functional description of the electrons is accurate,280

thermodynamic (static) properties of the simulated system will be accurate. However, the dynamical281

properties are not to be trusted. In general, the algorithm does not give an accurate representation of282

quantum dynamics.283
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2.3. Coupled Electron-Ion Monte Carlo284

The QMC methods described so far, when applied to an ion-electron system, treat all particles285

on the same footing, either both in the ground state [31–33] or both at the same finite temperature286

[34–36]. However the large nucleon-electron mass ratio implies a wide separation of time and energy287

scales and it is a common practice to adopt the adiabatic, or Born-Oppenheimer (BO), approximation.288

Ignoring such an approximation in QMC causes difficulties. The imaginary time step of the path integral289

representation (both in DMC/RMC and PIMC) is imposed by the light electron mass. In DMC this290

means that nuclear “dynamics” (the speed of sampling configuration space) is much slower than electron291

“dynamics” requiring very long (and time consuming) trajectories. In PIMC the separation of time scales292

presents itself as a separation in the regions where thermal effects are relevant: in high pressure hydrogen293

for instance nuclear quantum effects becomes relevant below ∼ 2000K where electrons are, to a very294

good approximation, in their ground state. Performing PIMC in this region of temperatures requires very295

long electronic paths causing a slowing down of the exploration of configuration space and effectively296

limiting the ability of PIMC to perform accurate calculations at low temperatures.297

The Coupled Electron-Ion Monte Carlo method (CEIMC) is a QMC based on the BO approximation298

[8]. In CEIMC a Monte Carlo calculation for finite temperature nuclei (either classical or quantum299

represented by path integrals) is performed using the Metropolis method with the BO energy obtained300

by a separate QMC calculation for ground state electrons. CEIMC has been extensively reviewed in refs.301

[8,10]. Here, we only briefly report the main technical features of the method.302

2.3.1. Penalty Method303

In CEIMC the difference of BO energies of two nearby nuclear configurations in a MC attempted304

step, as obtained by an electronic QMC run, is affected by statistical noise which, if ignored, results in a305

biased nuclear sampling. To cope with this situation either the statistical noise needs to be reduced to a306

negligible value by long electronic calculations (very inefficient), or the Metropolis acceptance/rejection307

scheme needs modifications to cope with noisy energy differences. The latter strategy is implemented in308

the Penalty Method [37] which enforces detailed balance to hold on average over the noise distribution.309

The presence of statistical noise causes an extra rejection for a single nuclear move with respect to the310

noiseless situation. An extra “penalty” defined as the variance of the energy difference over the square311

of the physical temperature is added to the energy differences. Therefore running at lower temperatures312

requires a reduced variance to keep an acceptable efficiency of the nuclear sampling. Small variances313

can be obtained if correlated sampling is used to compute the energy of the two competing nuclear314

configurations. In an attempted nuclear MC step, a single ground state electronic run is performed315

with a trial wave function which is a linear combination of the wave functions of the two nuclear316

configurations considered. The BO energy of the two nuclear configurations is obtained by a reweighting317

procedure which provides energy differences with a much reduced variance with respect to performing318

two independent electronic runs if the “distance” between the two nuclear configurations is limited (i.e.319

the overlap between the trial wave functions of the two configurations is large) [38]. This strategy allows320

an efficient sampling of nuclear configuration space for high pressure hydrogen and helium down to321

temperature as low as ∼200K.322
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2.3.2. Nuclear PIMC323

When nuclear quantum effects are included using a path integral representation (see §2.2), the relevant324

inverse temperature in the penalty method is the imaginary time discretization step τ , so that no loss of325

efficiency is experienced when lowering the temperature (i.e. taking longer paths). For quantum protons326

in high pressure hydrogen, CEIMC can be used to efficiently study systems at temperatures as low as327

∼200K. In the present implementation of nuclear quantum effects in CEIMC, we introduce an effective328

pair potential between nuclei and use the pair density matrix corresponding to the effective potential329

to factorize the imaginary time propagator. The residual difference between the energy of the effective330

system and the BO energy of the original system is considered at the primitive approximation level of the331

Trotter break-up of the proton propagator [8]. In high pressure hydrogen (rs = 1.40) it is found that with332

this strategy, an inverse time step of τ−1 '4800K is enough to reach convergence of the thermodynamics333

properties, which allows to study systems at low temperature with a limited number of time slices (≤50).334

In CEIMC many-body nuclear moves are preferred to single-body moves. The reason is that even if335

only few nuclei are moved the entire electronic calculation must be repeated, by far the most expensive336

part of the method. For this reason we sample nuclear configuration by a smart Monte Carlo method337

[39] in the normal mode space of the path [40] with forces from the effective two body potential. This338

strategy allows us to simulate systems of ∼100 protons (for hydrogen) at temperature as low as 200K339

with an acceptable efficiency.340

2.3.3. VMC vs RQMC341

The main ingredient of CEIMC is the electronic QMC engine used to compute the BO energy. As342

mentioned a very important aspect for the efficiency of CEIMC is the noise level which is related to the343

variance of the local energy. In ground state QMC (see §2.1) the “zero variance principle” applies: if the344

trial wave function is an eigenfunction of the Hamiltonian, the local energy is no longer a function of the345

electronic coordinates and a single calculation provides the exact corresponding eigenvalues. Therefore346

by improving the trial wave function and approaching the exact ground state, the variance of the local347

energy decreases to zero. In connection with CEIMC, this is important not only for the accuracy of the348

BO energy but also for the efficiency of the nuclear sampling since the extra rejection due to the noise is349

reduced for a more accurate trial wave function.350

To go beyond VMC accuracy in CEIMC we have implemented Reptation QMC method (RMC) [8,351

26]. RMC is superior to DMC in the CEIMC context since it uses an explicit representation of the352

statistical weight of each path and therefore the reweighting procedure needed for estimating energy353

differences is easily applied. Going from VMC to RMC accuracy in CEIMC requires at least one order354

of magnitude more computer time. This is because it is in general more difficult to properly sample the355

configuration space of a 3N-dimensional path than of a 3N-dimensional point. It is analogous to the356

difficulty of sampling the configuration space of a long polymers with respect to point particles. For357

any proposed nuclear move one has to relax the electronic path to the new equilibrium and perform358

long enough sampling of the electronic configuration space to compute the energy difference with the359

required noise level.360
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In order to improve the efficiency of CEIMC while keeping the RMC accuracy, we have recently361

developed a method, based on a peculiar thermodynamic integration, to estimate the free energy of the362

system with RMC based BO energy from the knowledge of the free energy of the system with VMC363

based BO energy [41]. This allows to extensively use VMC rather than RMC, performing RMC on364

selected thermodynamic states only.365

2.3.4. Hydrogen trail wave function366

For high pressure hydrogen we have developed a quite accurate trial function of the Slater-Jastrow,367

single determinant, form. The Jastrow part has an electron-proton and electron-electron RPA term plus368

two-body and three-body numerical terms. The Slater determinants (one for each spin state) is built with369

single electron orbitals, obtained by a self-consistent DFT solution, expressed in terms of quasi-particle370

coordinates with a backflow transformation. [42,43]. We have recently integrated the PWSCF [44] DFT371

solver into our CEIMC code to ensure a faster and uniform convergence of the single electron orbitals372

in different physical conditions. Our trial wave function has a total of 13 variational parameters to be373

optimized [38,43].374

In view of the large variability of DFT results from different exchange-correlation approximations in375

the dissociation region of high pressure hydrogen (see next section), one interesting question is about376

the sensitivity of the trial wave function to the particular form of the adopted Kohn-Sham orbitals in377

the Slater determinant. This is particularly relevant since the form of the orbitals determine the nodal378

surface of the trial wave function, the ultimate limit in the accuracy of fermionic QMC. On one hand379

one could hope to further improve the quality of the trial wave function by varying the type of orbitals,380

on the other hand a large sensitivity to the form of the Kohn-Sham orbitals will signal a too constrained381

form of the wave function, probably with a large room for improvements. The recent technical advance382

of the CEIMC code, namely the integration of PWSCF, allowed us to test several different types of383

orbitals: standard local (LDA) and semilocal (GGA-PBE) approximation, a non-local functional devised384

to reduce the self-interaction error and improve the description of the electronic correlation in DFT (HSE385

[45]) and a functional devised to improve the description of the dispersion interactions which are absent386

in a self-consistent mean-field theory (vdW-DF2 [46–48]) . In the range of coupling parameter 1.22 ≤387

rs ≤ 1.44 which corresponds approximatively to the range of pressure between 200GPa and 550GPa388

according to DFT, we have considered four recently proposed candidate structures for the molecular389

crystal [49], namely C2/c, Cmca-12, Pbcn and P63m. For each structure we have performed parameter390

optimizations for the four mentioned forms of the orbitals and at eight different densities. Supercells of391

96 atoms were considered for C2/c, Cmca-12 and Pbcn structures, while a supercell of 128 atoms was392

studied for the P63m structure. Moreover for a single structure, Pbcn, at a single value of rs = 1.35 we393

have performed a complete RMC study. In figures 1 we report for all densities investigated the variational394

energies from the different orbitals relative to the energy of the trial function with LDA orbitals. We note395

that for all structures and at all densities LDA, PBE and HSE orbitals provides trial functions of the same396

quality (differences are of the order of 0.2 mH/atoms=90K except in a single case, Cmca at rs = where397

the difference is three time larger). Instead the trial function with orbitals from vdW-DF2 functional398

provides higher energies, by roughly 0.4mH/at with values up to 1.4mH/atom (' 630K). This first399

result is quite indicative that our trail function is flexible and general enough to be very little sensitive400
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Figure 1. Variational energy of four different crystalline molecular structures versus rs: C2/c
upper-left panel, Cmca-12 upper-right panel, P63m lower-left panel and Pbcn lower-right
panel. Energies from wave functions with different orbitals relatives to the energy with LDA
orbitals: PBE orbitals (red triangles), HSE orbitals (green closed circles) and vdW-DF2
orbitals (blue closed squares).
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Figure 2. Pbcn structure of molecular hydrogen at rs = 1.35. Left panel: energy per
atom versus projection time in RMC from different kind of orbitals: LDA (closed red
squares), PBE (green closed circles), HSE (upward blue triangles), vdW-DF2 (downward
purple triangles). Also results from the old LDA implementation (cyan open circles) are
reported. Right panel: Energy per atom versus variance in RMC from different kind of
orbitals.
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to the form of the orbitals (more comments please). In order to check whether the observed differences401

from vdW-DF2 orbitals could be due to optimization problems only, we performed a complete RMC402

study for a single case, namely the Pbcn structure at rs = 1.35. A time step of τ = 0.005h−1 has been403

adopted, a value quite small. In figure 2 the energy versus projection time is reported for all kind of404

orbitals. We also added results from our old DFT solver with LDA orbitals plagued by the truncation405

error. For all kinds of trial function we observe a very similar relaxation with projection time meaning406

that the quality of the trial function is similar in all cases. The differences observed at the variational407

level essentially remain along the projection and therefore in the extrapolated value for the total energy.408

A quantitative way to estimate the extrapolated (β →∞) value of the total energy is to plot energy versus409

its variance and use a linear extrapolation at small values of σ2. This plot for all studied cases is shown410

in the right panel of figure 2. We see that the three kinds of orbitals, LDA, PBE and HSE all provides411

extrapolated energies within error bars (E0 = −0.5350(2)), while the the vdW-DF2 orbitals provides a412

higher value (E0 = −0.5342(2)). The fact that the RMC projection is not able to remove the difference413

observed at the VMC level means that the nodes from the vdW-DF2 are less accurate than for the other414

kind of orbitals, which instead, despite their differences, provide essentially the same nodal structure.415

Finally we note that our old implementation of LDA orbitals provides a less accurate determination of416

the energy with correspondingly larger variance.417
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3. Applications418

3.1. High-Pressure Hydrogen419

Hydrogen is the simplest element of the periodic table and also the most abundant element in the420

Universe. Because of its simple electronic structure, it has been instrumental in the development of421

quantum mechanics and remains important for developing ideas and theoretical methods. In the next422

section we explore its use in developing DFT functionals. Its phase diagram at high pressure has received423

considerable attention from the first-principles simulation community due to its critical importance in424

many fields like planetary science, high pressure physics, astrophysics, inertial confinement fusion,425

among many others [10,50,51]. The phase diagram of hydrogen at high pressure contains many426

interesting features including: a maximum in the melting line with a subsequent negative slope [52,53],427

a predicted liquid-liquid transition between an insulating molecular and a conducting atomic phase428

[54,55], exotic molecular phases at low temperature, and a predicted metal-insulator transition in the429

solid phase [10,51].430

The ground state structure of crystalline hydrogen across the pressure-induced molecular dissociation431

has been studied by DMC [31–33] which predicted molecular dissociation at density corresponding432

to rs ' 1.3. R-PIMC has been applied to investigate the warm dense matter regime, namely the433

regime of high pressure and density where thermal and pressure molecular dissociation and ionization434

occur simultaneously [34,35,56]. Particularly relevant for our current understanding of the phase435

diagram and the Equation of State (EOS) of compressed hydrogen has been the determination of436

the primary and secondary Hugoniots lines of deuterium which could be directly compared with437

experimental data [36,57]. RPIMC predictions for the principal Hugoniot of deuterium were first438

in disagreement with pulsed laser-produced shock compression experiments [58–60], but were later439

confirmed by magnetically generated shock compression experiments at the Z-pinch machine [61–66]440

and by converging explosive-driven shock waves techniques [67,68]. Also relevant for the development441

and fine tuning of simulation methods for warm dense matter has been the comparison with the442

less demanding, but also less fundamental methods based on Density Functional Theory (either443

Kohn-Sham or Orbital-Free functionals). A general agreement between RPIMC and First Principle444

Molecular Dynamics (FPMD) predictions for the Hugoniot lines was observed [10] except at the lowest445

temperatures that could be reached by RPIMC (∼ 10000K). More recently the synergetic use of BOMD446

and R-PIMC has allowed to produce first-principle based EOS’s in a wide range of physical conditions447

for hydrogen, helium and hydrogen-helium mixtures [69], instrumental in planetary modeling and crucial448

ingredients for the hydrodynamic codes used in the large facilities for extreme conditions experiments.449

Temperatures lower than ∼ 10000K cannot be easily reached by RPIMC without reducing the level450

of accuracy. However, most of the interesting phenomena in high pressure hydrogen, like molecular451

dissociation under pressure, metallization, solid-fluid transition, a possible liquid-liquid phase transition452

and its interplay with melting, the various crystalline phases and the transition to the atomic phases453

[10], occur at lower temperature out of the reach of RPIMC. Investigating this regime by QMC methods454

has been the main motivation in developing CEIMC. The other motivation, as mentioned above, is the455

benchmark of the much more developed (and less demanding) alternative theoretical method, namely456
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FPMD based on DFT. Indeed the numerical implementation of DFT is based on approximations (the457

exchange-correlation functional) the accuracy of which can only be established against experiments458

or, better, against more accurate theories. As mentioned earlier, QMC energy is an upper bound and459

therefore has an internal measure of accuracy.460

CEIMC has been applied to investigate the WDM regime of hydrogen and helium and benchmark461

FPMD [43,55,70]. In ref [55] an investigation of the fully ionized state of hydrogen in a region462

of pressure and temperature relevant for Jovian planets found that FPMD based on the GGA-PBE463

exchange-correlation functional and CEIMC are in very good agreement but both deviates from a464

widely accepted phenomenological EOS. The agreement between the simulation methods becomes less465

good when approaching the molecular dissociation regime at slightly lower temperature and pressure.466

Both CEIMC and FPMD with different approximated functionals has been applied to investigate the467

Liquid-Liquid phase transition (LLPT) region in hydrogen [41,55,71]. The emerging picture is that468

a weak first-order phase transition occurs in hydrogen between a molecular-insulating fluid and a469

metallic-mostly monoatomic fluid. At higher temperature, molecular dissociation and metallization470

occur continuously. However the precise location of the transition line and the critical point are still471

matter of debate since several levels of the theory provide different locations. Within FPMD-DFT the472

location of the transition line depends strongly on the exchange-correlation functional employed and on473

whether classical or quantum protons are considered [71]. Transition lines from the PBE and vdW-DF2474

approximations differ by roughly 200-250GPa, the PBE one being located at lower pressure. The PBE475

melting line with quantum protons is not in agreement with experiments, which highlights the failure476

of the PBE approximation when employed together with the quantum description of the nuclei. On477

the other hand, optical properties for the vdW-DF2 approximation are in agreement with experiments478

supporting the use of this functional for hydrogen in the WDM regime. The LLPT line from CEIMC lies479

in between the lines from PBE and vdW-DF2 functionals [41,55]. However, those results were plagued480

by a truncation error in the calculations of the single electron orbitals which showed up only around481

the metallization and which resulted in biased estimates. We have now changed the DFT solver in our482

CEIMC code and checked the convergence. We find a roughly uniform shift of the transition line by∼ 50483

GPa to higher pressure and we are performing new calculations with quantum nuclei. Preliminary results,484

based on VMC electronic energies5, suggests that, similarly to the DFT scenario, nuclear quantum effects485

favor molecular dissociation and become increasingly important at lower temperatures. We estimate that486

the transition pressure is decreased, because of nuclear quantum effects, by ∼60GPa at 600K and by487

∼150GPa at 300K (from 430GPa for classical nuclei to 290GPa for quantum nuclei). The last estimate488

however is for a metastable liquid state obtained by an instantaneous quenching of the fluid at higher489

temperature, while it is expected that the equilibrium state at 300K and ∼290GPa be crystalline (of490

unknown structure) [10]. In figure 3 we report CEIMC proton-proton g(r) at various densities along the491

T=600K isotherm to illustrate the relevance of nuclear quantum effects on the pressure dissociation.492

The preliminary CEIMC results suggest that, despite the good performance observed on band gap493

calculation in the crystalline phases [72], the vdW-DF2 exchange-correlation functional has a tendency494

to over-stabilize molecules.495

5RMC corrections to the transition lines was previously found to be small and we expect an even smaller effect with the
new CEIMC implementation since the VMC variance is roughly half of what it was in the previous code[41]
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Figure 3. Proton-proton radial distribution function at various density along the isotherm
T=600K. Comparison between classical nuclei (red continuous line) and quantum nuclei
(green dashed line) for hydrogen nuclear mass. It is evident the molecular dissociation with
increasing density.
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Although our results demonstrate the power of CEIMC in predicting the physical properties of496

hydrogen, its use is still quite demanding in terms of computer time, a fact that limits its applicability.497

This is particularly true when a much larger exploration of external conditions is needed to clarify498

the physics. For example, to study the crystalline state of the molecular system and clarify the499

molecular-atomic transition mechanism in the solid state, it is necessary to consider a large number500

of candidate structures, some of which have very large unit cells (the recently proposed Pc structure501

for phase IV of molecular hydrogen contains 192 proton, double what was considered in the LLPT).502

Moreover, in studying those structure at finite temperature it is important to apply a constant stress503

algorithm allowing the simulation box to deform and releasing the excess internal stress that otherwise504

would produce metastable states. While larger systems ( > 250 particles) and constant pressure505

algorithms are routinely used in FP methods based on DFT, their use in conjunction with CEIMC is506

still problematic. Therefore, it is important to apply CEIMC and other QMC methods to validate DFT507

predictions and determine the most accurate functional for a given system. The same considerations508

apply to systems more complex than hydrogen. In the next section we will describe our effort to509

benchmark functionals for high pressure hydrogen and for water in condensed phase.510
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3.2. QMC Benchmarks of DFT511

Within the Born-Oppenheimer approximation at low temperatures, the only interaction between ions512

and electrons comes through the potential energy surface E0(R), defined as the solution of the electronic513

hamiltonian for a fixed set of ionic coordinates. E0(R) is typically approximated by EDFT (R) in514

first-principles calculations, and obtained from a density functional theory (DFT) calculation. Over the515

last several years, many-body methods for solids have been developed to the point that the prospect of516

developing density functionals from accurate reference calculations is now a possibility. In this section,517

we show how quantum Monte Carlo calculations can be used to benchmark the accuracy of DFT in the518

description of the potential energy surface. The quality of EDFT (R) defines the predictive capabilities519

of the resulting first-principles simulation. We use large sets of representative configuration from PIMD520

simulations, and compare the mean absolute error between accurate QMC calculations and various DFT521

functionals. We present preliminary calculations on high pressure hydrogen and liquid water at ambient522

conditions, two materials that are particularly challenging to DFT due to the subtle competition between523

dispersion interactions, nuclear quantum effects, hydrogen bonding, and anisotropic interactions.524

3.2.1. Hydrogen525

The phase diagram of hydrogen at high pressure has been extensively explored using first-principles526

simulations with DFT [54,55,73–76]. In spite of the large number of studies performed on , most of the527

work so far has employed either the local density (LDA) [77] approximation to the exchange-correlation528

potential or the Perdew-Burke-Ehrzenhof (PBE) [78] generalized gradient approximation. These are two529

of the simplest functionals currently available in DFT. In fact, both of them suffer from self-interaction530

errors and lack a proper treatment of dispersion interactions, making their application in the regime of531

molecular dissociation questionable. Recently, the use of DFT functionals with an improved description532

of dispersion interactions has been employed in the study of the liquid and solid molecular phases in533

the neighborhood of molecular dissociation. It was found that the dissociation density changed when534

compared to calculations using PBE [71,72]. Since these functionals were not designed for materials535

at high density, and because dispersion interactions are clearly important in dense molecular hydrogren,536

there is a crucial need for accurate calculations that can be used to benchmark the different exchange-537

correlation functionals employed in first-principles simulations.538

Since sufficient experimental data does not exist to validate the quality of functionals in the539

high-pressure high-temperature regime of the phase diagram, we used fixed-node diffusion Monte540

Carlo (DMC) to benchmark the accuracy of several DFT functionals over a range of densities near541

the liquid-liquid phase transition (LLPT) at a temperature of T = 1000 K. Henceforth, we will refer542

to densities using the parameter rs =
(

3
4π

V
N

)1/3, where N is the number of hydrogen atoms. First,543

we ran PIMD simulations with the PBE functional for N = 54 hydrogen atoms at three densities:544

rs = 1.30, 1.45, 1.60. In this range of densities, the liquid goes from an insulating molecular state545

at rs = 1.60 to a conducting atomic liquid at rs = 1.30. The density rs = 1.45 is intemediate and546

close to the LLPT for this functional. After equilibration, we sampled 100 ionic configurations from547

uncorrelated PIMD time slices for each density. For each configuration at each density, we calculated548
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Figure 4. Histograms of ∆EDFT for the PBE functional for dense hydrogen at densities
rs = 1.30, 1.45, 1.60 at T = 1000K. ∆EDFT refers to the absolute energy difference per
hydrogen atom between the DFT and QMC for a given configuration. There were 54 atoms
per configuration.
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the DMC energy, and then computed EDFT (R) for the following functionals: LDA, PBE, vdW-DF [46],549

vdW-DF2 [47,48,79], and HSE [45].550

All QMC calculations were performed with the QMCPACK [80–82] software package. We used551

a Slater-Jastrow trial wavefunction with twist-averaged boundary conditions [83], employing a 3x3x3552

grid of boundary conditions. For the Jastrow functions, we used real space b-splines with optimizable553

knots. We included spin-independent one-body proton-electron terms; a short-ranged term with the554

appropriate cusp condition, and a long-ranged term. We also included two long-ranged spin-dependent555

electron-electron functions with appropriate cusp conditions. For each configuration, linear optimization556

with VMC was performed for all Jastrow parameters at a single twist-angle, these parameters were557

subsequently used for all twists in the DMC calculations. For the DMC run, a timestep of τ = 0.05Ha−1
558

and 6000 walkers were used. The orbitals were obtained from DFT using the Quantum Espresso software559

package [44], using the PBE functional. We used a plane wave cutoff of 210 Ry. DFT calculations560

were performed with a Troullier-Martins norm conserving pseudo-potential [84] with a cutoff radius of561

rc = 0.5a0, DMC calculations were performed with the Coulomb potential. Based on the scale of the562

energy differences, we found a statistical error of 0.02 mHa/particle to be sufficient for present purposes.563

An example of the comparison between QMC and DFT is given in Fig. 4. Shown is a histogram564

of the energy difference between the results of DMC and the PBE functional at the three densities:565

∆EDFT = EDFT − EDMC . Given that rs = 1.30 corresponds to the atomic liquid, and rs = 1.60566

to the molecular liquid, we immediately see that the errors incurred by using the PBE functional are567

not consistent across the LLPT. As expected, PBE offers a much better description of the atomic liquid568

compared to the molecular phase, where self-interaction errors are larger and dispersion interactions569

are important. This is a well-known failure of most semi-local density functionals, which tend to favor570

delocalized states.571
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Figure 5. Mean absolute error of energy/atom vs. functional for dense liquid hydrogen
at 1000K. For each functional, we computed the mean absolute error for three different
densities, denoted by the different colored bars.
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To better quantify and compare the quality of functionals, we have computed the mean absolute572

error (MAE) from data similar to that shown in Fig. 4. This quantity is defined as MAEfunc =573

〈|∆EDFT − 〈∆EDFT 〉|〉, where the average is taken over all configurations at a particular density. Notice574

that we subtract the average energy difference in the definition of the MAE, since the zero of energy of575

each functional is modified by the use of pseudopotentials. Energy differences are more significant since576

the structure of the liquid is only sensitive to differences. The MAE gives us one measure of the quality,577

or predictive capability, of a given functional as defined by the reference method, in this case DMC. We578

have tabulated our results in Fig. 5.579

There are several interesting features in Fig. 5 directly related to the expected performance of580

these functionals in the description of hydrogen near molecular dissociation in the liquid. First, the581

two semi-local functionals in the comparison, LDA and PBE, have considerably different errors in the582

molecular and atomic regimes. As described above, the atomic regime is more accurately described583

in comparison to the molecular phase, leading to a potentially strong underestimation of dissociation584

transition pressures in both solid and liquid phases. This is consistent with recently reported simulations585

[71]. On the other hand, both the hybrid HSE and the functionals with improved dispersion vdW-DF and586

vdW-DF2 offer a more consistent level of description between the two regimes. The mean absolute errors587

of the HSE and vdW-DF functionals are approximately half that of the PBE functional for all densities,588

which indicates that these functionals more accurately capture energy differences between various liquid589

configurations.590

3.2.2. Liquid Water591

Water plays a central role in many scientific fields [85]. It is a critical component to almost all592

chemical, biological, and geophysical processes. As a result, it is one of the most studied substances593

in science, both from an experimental and a theoretical point of view. Despite such broad importance,594
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water’s most basic property, its local structure at ambient conditions, characterized by the geometry of595

its underlying hydrogen-bond (H-bond) network, has remained a matter of debate for over a century596

[86–88]. Challenges arise because water is only ≈ 25 K (at room temperature) from the melting597

temperature of ice, where a variety of subtle and complex effects become important. While the structure598

is dominated by H bond between neighboring molecules, both van der Waals (vdW) interactions (which,599

in this context, refers to dispersion forces resulting from dynamical nonlocal electron correlations) and600

nuclear quantum effects (NQEs) influence the topology of the H-bond network. In fact, it is precisely601

these seemingly subtle effects (compared to H bonding) that are key to accurately describing ambient602

water, but have been (until recently) difficult or impossible to model.603

Atomistic simulations have the potential to resolve these issues, particularly using first-principles604

methods. Providing an accurate theoretical description has been a central topic and open challenge in605

physical chemistry for many decades. Despite considerable focus over the last decade, to date DFT has606

proven insufficient for the accurate description of liquid water [4,89]. Nonetheless, much progress has607

occurred during the last several years. The main advances include the use of functionals that properly608

describe dispersion interactions in the liquid [46,48,90,91], the use of hybrid functionals [92], and the609

direct treatment of nuclear quantum effects [93]. The combination of all of these advances in first-610

principles simulations of liquid water could lead to an accurate description of its interesting properties,611

including its local structure. At the same time, the choice of exchange-correlation functional in DFT is612

still a source of complication, mainly due to the large number of possibilities and the inability to test their613

predictive capabilities without resorting to full first-principles calculations of a large set of observables.614

As in the case of hydrogen, an accurate first-principles description almost certainly requires the use of615

path integral methods in order to directly treat nuclear quantum effects, which makes the calculations616

quite computationally intensive. What is needed is a way to assess the quality of a given functional617

without having to resort to first-principles calculations of the liquid at the PIMD level, and if possible, a618

way to systematically improve them using high quality reference calculations from accurate many-body619

methods.620

In this section, we present QMC calculations of configurations of molecules extracted from PIMD621

simulations of liquid water. QMC has been shown to be a reliable benchmark in the study of small622

water clusters [94–96], and should provide an accurate reference method to measure the quality of623

typical density functionals used in simulations of water. All DMC calculations were performed with624

the QMCPack software package [80–82]. A Troullier-Martins norm-conserving pseudo-potential [84]625

was used to represent both hydrogen and oxygen. In particular, we used the pseudo-potentials from the626

CASINO database [97,98], which were recently shown to produce accurate results in the study of small627

water clusters. A Slater-Jastrow trial wave-function was used. The orbitals in the Slater determinant628

were obtained from DFT calculations employing the PBE exchange-correlation functional. We do not629

expect a strong dependence of the resulting comparison on the functional used to generate the orbitals.630

The Jastrow term contains electron-ion, electron-electron and electron-electron-ion terms, the variational631

parameters were optimized at the VMC level using a variant of the linear method of Umrigar, et al. [99].632

A time-step of 0.01 Ha−1 was found to be sufficiently small to produce accurate total energies and633

approximately 4800 walkers were used in the DMC calculations. Casula’s T-moves [100] were used to634
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reduce locality errors, while the Model Coulomb Potential [101] and Chiesa’s [102] correction scheme635

were used to estimate finite-size corrections to the potential and kinetic energies respectively.636

DFT calculations were performed with both Quantum Espresso (QE) [44] and VASP [103–105]637

simulation packages. In the case of QE calculations we employed norm-conserving Troullier-Martins638

pseudo-potentials, while in the case of VASP calculations we employed the Projector Augmented Wave639

method (PAW) [106,107]. A single pseudo-potential (constructed with PBE) was chosen in order to640

make a homogeneous comparison of all DFT functionals, since some of the functionals employed in641

this work do not yet allow for the production of pseudo-potentials. All simulations were performed at642

the Γ point of the supercell in order to be consistent with the corresponding DMC calculations; errors643

due to the lack of k-point integration were small enough to be safely discarded. We carefully tested the644

convergence with the plane-wave cutoff in all DFT calculations.645

We present calculations for 3 different configuration sets. The first two sets, which we called TIP5P-646

PI-0C-ICE and TIP5P-PI-0C-LIQ, were generated with PIMC calculations on simulation cells using647

the TIP5P water model and 32 molecules [108]. As the name suggests, the PIMC calculations used648

to generate the configuration set were performed at T = 0 C, from stable solid and liquid phases. The649

third configuration set was obtained from PIMD calculations of 64 water molecules, at room temperature650

and a density of 1 g/cm3, with the vdW-DF2 functional, which has been recently shown to provide an651

accurate description of the structure of water when combined with a path integral representation [10].652

The number of configurations in each set is 20, 47, 50, respectively. The three configuration sets sample653

different aspects of the potential energy surface of liquid water. While TIP5P is a rigid molecule model,654

the first-principles simulations with vdW-DF2 are fully flexible, which allows us to emphasize different655

ranges of the molecular interactions in the liquid. On the other hand, the simulations with TIP5P in both656

liquid and solid phases at T = 0C sample the configurations that either strongly favor hydrogen bonding657

in the solid, with those where the hydrogen-bond network has been destabilized in the liquid.658

Figure 6 shows the mean absolute difference in the total energy between DMC and DFT calculations,659

results are separated by configuration sets in order to allow for a more clear comparison between660

them. Several functionals are considered including the semi-local functionals: PBE [78]; the hybrid661

functionals: PBE0 [45], B3LYP [109,110]; the non-local van der Waals functionals: optB88 [111],662

optPBE [111], optB86b [112], vdW-DF [46] and vdW-DF2 [48]; and finally functionals with the663

empirical van der Waals correction of Grimme, et al., (DFT-D2) [113]. While there are many interesting664

results in this comparison, the most noticeable feature is the large difference in the scale of the differences665

between rigid and flexible molecule configurations. This is not unexpected since the larger energy666

fluctuations in the system are found coupled to the intramolecular degrees of freedom of the molecule. In667

the case of flexible molecule configurations, hybrid functionals offer a much better agreement with DMC668

results, producing errors typically a factor if 2 smaller than non-hybrid functionals. This results shows669

the fact that hybrid functionals do a much better job at describing the intramolecular potential energy670

surface. This is consistent with the recent calculations of Alfe, et al. [95] and with the recent calculations671

of the absorption spectra of bulk water at ambient conditions of Zhang, et al. [92]. On the other672

hand, the functionals that include an appropriate description of dispersion interactions offer a clearly673

better comparison with QMC in the rigid-molecule configuration sets. In this case, the intermolecular674

interactions are the dominant energy contribution and the lack of appropriate dispersion leads to a larger675
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error. In this case, we can also see a small but finite improvement with the inclusion of empirically676

corrected vdW functionals (PBE-D, B3LYP-D), but the gain is small and can not compete with non-local677

vdW functionals. Notice also that the performance of hybrids in the fixed-molecule sets is comparable678

to the performance of semi-local functionals, due to the fact that neither of these type of functionals can679

properly describe dispersion interactions. Finally, the configuration set with the smallest overall MAE is680

the one obtained from the calculations in the solid phase close to melting, showing the fact that most of681

these functionals can describe hydrogen bonded configurations fairly well.682

Figure 6. Mean absolute difference in the total energy between DMC and DFT with
various exchange correlation functionals for a supercell containing water molecules. Results
presented correspond to calculations using the PAW formulation with VASP. X-D, where
X represents a given density functional, designates results using the empirical dispersion
corrections of Grimme et al., [113], in particular the DFT-D2 correction scheme as
implemented in VASP. Statistical errors on the presented results are on the order of 0.003
mHa and 0.005 mHa for rigid and flexible molecule configurations respectively. They are
not shown on the figure for clarity.
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4. Discussion683

Direct first-principles simulations with QMC accuracy of condensed phases systems are nowadays684

possible but restricted so far to the simplest first few elements of the periodic table, namely hydrogen,685

helium and their mixtures. Even for those simple systems challenges are present and the computational686

demand is large. Nonetheless CEIMC predictions for the liquid-liquid phase transition in hydrogen687

remains today the target for less accurate but faster DFT-based FP methods. While much work remains688

to be done in developing QMC-based FP methods, the calculations presented here show one possible689

use of accurate many-body calculations, using QMC to benchmark the accuracy of DFT functionals.690

Not only does this allows us to make a judgment of the quality of a functional before its use in first-691

principles simulations, but it also shows us a path for the systematic improvement of the functionals692

by adjusting free parameters to minimize the MAE. DFT users will often point to experimental data to693

validate the quality of a chosen functional. What we have shown is that we can use highly-accurate QMC694

methods to benchmark functionals around the LLPT of hydrogen, from first-principles. In addition,695

this set of reference energies for the bulk system can be used to optimize the free parameters in the696

DFT functional to minimize the MAE, and in the limit of a large data set, reproduce the quality of697

the more accurate many-body method in first-principles calculations using DFT. This approach will be698

increasingly necessary as we continue to explore matter under extreme pressures, since experimental699

data is often insufficient or nonexistent at geophysical/planetary scales. It will also be necessary for700

other situations where DFT functionals have difficult, such as near metal-insulator transitions.701

Let us consider a more general point. We suggest that in general it is superior to use total energies to702

find an interatomic potential (force field) The traditional approach is to fit experimental data, for example703

the melting temperature of ice, the density of water versus temperature etc.. Clearly it was necessary to do704

this in the past since experimental data was all that was available. However, using this approach requires705

very extensive calculations including free energy or equivalent computations and ultimately only gives706

a single constraint. We can invoke ”The Allegory of the Cave” from Plato’s The Republic. We should707

not look to fit the atomic potentials using the projections of the energy surface onto thermodynamic708

properties but to fit directly the energy surface. Thus we will obtain an interatomic potential good for709

all properties. The situation has changed with mature QMC methods and much more computational710

power available. (Note that scanning a PES is a task very well suited to massively parallel computers.)711

Including total energy QMC benchmarks into the fitting procedure in addition to experimental data, can712

allow for much more systematic improvements. QMC thus can provide a unique role in giving total713

energies and applicable to large enough systems to approximate condensed matter.714

Water and hydrogen show an additional complication of using experimental data: namely because of715

the importance of quantum zero-point effects of the protons, fitting of the experimental data becomes716

particularly problematical. A common approach is to do a simulation of the classical system and assume717

the effective classical system includes effects of ZPE (clearly this then becomes quite approximate). A718

complication, is that the interatomic potential that results can become temperature and density dependent719

with all known pathologies related to the use of state dependent potentials [114]. Or one has to do full720

PIMD simulations of the system in order to determine the best empirical potential, thus increasing the,721

already large, computational requirements considerably.722
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One aspect in determining good force fields is to find an appropriate basis set to parameterize the force723

field. Traditionally, these have contained few functions with very few parameters, e.g. the Lennard Jones724

potential with ε and σ. It is feasible today to calculate millions of points on a PES each of which will be725

the energy and 3N components of the derivative with respect to the ionic coordinates, the forces. Using726

QMC techniques, each would come with an error estimate. Hence, we can envision fitting this data set727

to a force field with potential millions of independent parameters. It is now feasible to fit a completely728

general pair potential (say with a spline basis), three body potential etc. The investigation into effective729

basis sets is now very important.730

We can thus imagine an integrated set of tools: QMC simulations of systems with thousands of731

electrons produce data sets of energies and forces. These can be used either to tailor a DFT to a particular732

system, or to determine a force field. The DFT simulations and the force field simulations can then be733

used to model much larger systems. Thus simulations can thereby become much more predictive, and734

not just produce universal properties but details important to applications and experiment.735
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